منابع مشابه
Poisson Geometry
This paper is a survey of Poisson geometry, with an emphasis on global questions and the theory of Poisson Lie groups and groupoids.
متن کامل4 PROP profile of deformation quantization ∗
Using language of dg PROPs we give a new short proof of existence of star products on (formal) germs of Poisson manifolds.
متن کاملPoisson Modules and Generalized Geometry
Generalized complex structures were introduced as a common format for discussing both symplectic and complex manifolds, but the most interesting examples are hybrid objects – part symplectic and part complex. One such class of examples consists of holomorphic Poisson surfaces, but in [5],[6] Cavalcanti and Gualtieri also construct generalized complex 4-manifolds with similar features which are ...
متن کاملPicard Groups in Poisson Geometry
We study isomorphism classes of symplectic dual pairs P ← S → P , where P is an integrable Poisson manifold, S is symplectic, and the two maps are complete, surjective Poisson submersions with connected and simply-connected fibres. For fixed P , these Morita self-equivalences of P form a group Pic(P ) under a natural “tensor product” operation. Variants of this construction are also studied, fo...
متن کاملGraded geometry and Poisson reduction
The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2005
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s00220-005-1385-7